- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dorgan, K_M (2)
-
Ballentine, W_M (1)
-
Clemo, W_C (1)
-
Dzwonkowski, B. (1)
-
Wallace, D_J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synopsis Meiofauna (benthic invertebrates < 1 mm in size) facilitate sediment biogeochemical cycling, alter sediment microbial community structure, and serve as an important trophic link between benthic micro- and macrofauna, yet the behaviors that mechanistically link individuals to their ecological effects are largely unknown. Meiofauna are small and sediments are opaque, making observing the in situ activities of these animals challenging. We developed the Meioflume, a small, acrylic flow tunnel filled with grains of cryolite, a transparent sand analog, to simulate the in situ conditions experienced by meiofauna in an observable lab environment. The Meioflume has a working area (28.57 mm × 10.16 mm × 1 mm) that is small enough to quickly locate fauna and clearly observe behavior but large enough that animals are not tightly confined. When connected to a syringe press, the Meioflume can produce low velocity flows consistently and evenly across the width of its working area while retaining the contents. To demonstrate its functionality in observing the behavior of meiofauna, we placed individual meiofaunal animals (a protodrilid annelid, a harpacticoid copepod, and a platyhelminth flatworm) in Meioflumes and filmed their behavioral response to a sudden initiation of porewater flow. All animals were clearly visible within the flume and could be observed responding to the onset of flow. The design and construction of the Meioflume make it an accessible, affordable tool for researchers. This experimental system could be modified to address many questions in meiofaunal ecology, such as studying behavior in response to chemical cues, allowing us to observe meiofaunal behaviors to better understand their ecological effects.more » « less
-
Clemo, W_C; Dorgan, K_M; Wallace, D_J; Dzwonkowski, B. (, Journal of Geophysical Research: Oceans)Abstract Sediment dynamics are fundamental to understanding coastal resiliency to climate change in the coming decades. Tropical cyclones can radically alter shallow sediment properties; however, the uncertain and destructive nature of tropical cyclones make understanding and predicting their impacts on sediments challenging. Here, grain size sampling in conjunction with continuous hydrodynamic data provided an unprecedented perspective of the impacts of two tropical cyclones, including Hurricane Sally (2020), in which the inner core of the storm passed directly over the field sites, on shallow coastal sediments in Alabama (USA). Sampling directly before and after Sally as well as out to ∼7 months after the second storm event, Hurricane Zeta, showed that the changes in sediments following storm events exhibited notable site‐to‐site variability. This variability during the first storm event was consistent with low sand supply and flow interactions driven by local bathymetry that led to sand transport and deposition at some previously‐muddy sites, near‐surface mud loss at some sandy sites, or little change at others. Post‐Sally impacts to grain size were well preserved 8 months after the storm, despite passage of Zeta as well as seasonal winds and riverine inputs during winter and spring. Overall, high temporal‐resolution sampling over a relatively large area (<500 km2) revealed relatively small‐scale spatial variability (on the order of 5–10 km) of hurricane impacts to sediment structure. These observations demonstrate a critical limitation for accurately predicting changes to coastal sediment dynamics in the face of a changing climate and its impact on tropical cyclones.more » « less
An official website of the United States government
